A SPECTRAL-FINITE ELEMENT METHOD FOR FLUID FLOW WITH LOW MACH NUMBER

ABDUR RASHID, MUHAMMAD YOUSAF, MUHAMMAD ABBAS, ABDUL KARIM AND MUHAMMAD SHAFIQUE

Department of Mathematics, Gomal University. Dera Ismail Khan, PAKISTAN

ABSTRACT

A highest highest highest half and finite element method for sloving two-dimensional, semi-periodic problem for fluid flow with low Mach number. Fourier Spectral method and finite element method are employed in the periodic and non-periodic directions respectively. A class of fully discrete scheme are constructed and strict error estimation are proved.

1. IN ODUCTION

The i will flow with low Mach number is governed by the following ferential e vions [1]:

$$\frac{U}{f} + (U \cdot V)U + \cdots + \frac{U}{f} = f, \qquad \forall m \Omega \times (0, T),$$

+ 'U·\) (

$$-U_0(x), P(-1) = O_0(x)$$
 (1.1)

 $I \sim \tilde{I}$, and $I = (x/(x^2 + 1)) = (y/(x^2 + 1))$,

>> 0 be the volocity the rati of power density,

the body force, and the Kinetic visc ity bectively. The

functions U,P and f have period 2π for the aria and that

$$U(0,y,t) = U(1,y,t),$$
 $\forall y,t \in [0,T].$

In addition, P satisfies the following normalizing condition:

$$\iint_{\Omega} P(x,y,t) dxdy = 0. \qquad (1.2)$$