IRREGULAR S₃ -ALGEBRAS

A. K. KHATTAK

Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan.

ABSTRACT

We characterize S3-algebra containing three, four and five elements by left-maps and show that there is an irregular such algebra of order 3, four irregular, non-isomorphic such algebras of order 4 and seventy irregular, non-isomorphic such algebras of order 5 respectively. Moreover we investigate that out of these algebras of order 3,4 and 5; one, three and seventeen are weakly positive implicative respectively.

In 1966, Y. Imai and K. Iseki introduced the concept of BCK-algebras ([1]). In the same year K. Iseki in [2] generalized that concept and obtained the notion of a BCI-algebra as follows:

A BCI-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the following axioms:

For all $x, y, z \in X$,

BCI1
$$(x*y)*(x*z) \le z*y$$
,

BCI 2
$$x * (x * y) \le y$$
,

BCI
$$3 \times x \leq x$$
,

BCI 4
$$x \le y$$
, $y \le x$ imply $x = y$,

BCI 5
$$x \le 0$$
 implies $x = 0$.

Where $x \le y$ if and only if x * y = 0

If in BCI 5"x ≤ 0 implies x = 0" is replaced by " $0 \le x$, $\forall x \in X$ " then X is a BCK- algebra.

The following are true in a BCI-algebra:

(1°)
$$(x*y)*z=(x*z)*y,$$

(2)
$$x * 0 = x$$
,

(3)
$$x \le y$$
 implies $x * z \le y * z$ and $z * y \le z * x$,

(4)
$$(x*z)*(y*z) \le x*y ([3]).$$

Let X be a BCI-algebra and B = $\{x \in X: 0 \le x\}$ be its BCK- part, then X is a proper BCIalgebra if X-B $\neq \phi$ ([3]).

It is well known that every BCK-algebra is a BCI-algebra but not vice versa.

Further in [3] K. Iseki has proved the following proposition:

Proposition 1. In a BCI-algebra X if $b \in B$, $x \in X-B$, then x * b, $b * x \in X-B$.

A non-empty subset A of a BCI-algebra $\,X\,$ is called a sub-algebra of $\,X\,$ if a, b \in A imply $a * b \in A([4]).$

Let X be a BCI-algebra and B its BCK-part, then X is called a p-semisimple algebra if $B = \{0\}$ ([5]). In [9], S. K. Goel, have shown that;