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ABSTRACT
Let p be an odd prime number, and o be a solution of an irreducible quadratic equation Xx* +ax+b =0
over the rationals Q. In Mushtaq study, the behavior of orbits of a quadratic irrational in a quadratic field

Q(OL) by the special linear transformation group SL(2, z) modulo {[1 o) (71 o]} is investigated,
0 1){lo 1

where; Z denotes the ring of rational integers (Mushtag, 1988). In this study, the above group is denoted
bypSL(Z’ ), presented as the projective special linear transformation group. Let o be a root of quadratic
equation X? —X —1= 0 (mod p), then we shall introduce the orbit of the (irrational) element o in a finite
field F [o] bypSL(Z F,) where F; equal toZ/pZ.

INTRODUCTION
in the disjoint orbit decomposition for the

Let p be an odd prime number and F, be the quadratic extension F, (o) over the prime

finite field of p elements{0, 1, ------ p-1. field F, acting on the modular

In this case, an element j in the field F, and groupSL(2, F;). The present study

the representative number j(0§j§p_1) in presents another orbit of length 156 given in
theorem 2.

a class {aeZa=j(modp)} in the

residue class field Z/pZ modulo p, where In the figure below, two points 5, 8 are fixed

Z denotes the ring of rational integers. by X, and two points 4,10 by ¥ in

0 -

Q(\/a) be a real quadratic number field SL(2 F,), where X:(:L O] and
over the rationals Q with non-square integer 1
d>2. = ,

1 0
In this article, we investigate an analogue in
the quadratic extension of the finite field F, To classify the finite field F (oc) according
to a result on the orbits of quadratic to the number of orbits in the field, where o
irrationals in a global field is a root of a quadratic
Q(\/a) (Mushtag, 1988). equationx® +ax +b =0 this study uses

Quadratic Reciprocity Law to deal with the

Mushtaq (1988) showed Fig. modulo 13, above mentioned problem.

where the diagram is one orbit of length 13
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RESULTS AND DISCUSSION

Two cases of odd prime numbers were
considered, the details of as follows:

Case No. 1:p =1, 4(mod 5).
Let D be the discriminant of the quadratic
equationf(x) =x*—x-1=0. Using the

first supplementary and quadratic reciprocity
law, we have

D)_(5 :(Bj:(i_l]:
P p 5 S
The equation f(x)=0 is decomposed in

the linear factors in Fp

f(x)=(x-a)(x-a),

_1+\/5 _1+c
where 2 2
- 1-c
a=——
2

The field F (o)=sa+tsteF,

coincides with Fp, namely in the case
ofp=1 4(mod 5), and the field extension

Fp(oc) over F, does not occur.

Let F;‘ be the multiplicative group in F_,
the special linear transformation group
SL(Z, Fp), is generated by

X
0
1 0)(-1 0)].
modulo , in
o 6 %)
Mushtaq (1988).

Using the two equations
G
X = = and
1 ® 1 0O)\1
R
Y for
1 ® 1 O)\1
®eQ(a), we identify a vector (B] and
Y

B

the ratio — for elements B, y € F, (o).
Y

Hence S(B) means S(lﬁ for any

transformation S e SL(Z, Fp ) . Then

o
By 1 1 and
Y2 (0)) — Y(m__j -
o o-1
Y3 (0)= Y(_—lj = . Hence the order
o-1

of X and Y is 2 and 3 respectively.
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As

XY? (o) = xv(“)—_lJ - x(_—lj —o-1
o o-1

Hence,

(XY?) (@)= Y 2X (0) = YX(0) =0 +1

Then it follows that
1— X yo_ YX y3....

Therefore, in the case of p=1, 4(mod 5),

we get a single orbit by the action of
PSL(2,F,).

Case No. 2: p=2,3(mod 5).
For any primep=2, 3(mod5), the

discriminant D =5 is not square in F,.

Thus the field

F (o) ={sa+ts teF,(a)

is the quadratic extension over F . To
determine the orbits by the action of
PSL(Z, Fp_) , we proceed as follows:

i). For any element a of F , and

taking the parallel transformation YX, the

closed circuit

a—*sa+1—% ...

YX

sa-1—>* sa

makes an orbit.
ii). Next, assume that a rational element

aeF and an irrational BeF (a)\F,
belong to the same orbit. Then there exists a

s t
transformation S = ( j € SL(2, Fp)

u v
such that S(a)=p
fOI’B=bOL+C,b¢0,CEFp, we  have
B=ba+c forﬁ:saHer,
ua+v

howeverbo +C ¢ Fp , which is a

contradiction.
iii). Finally, we show that any two
irrationals 3 and y belong to the same

orbit. For two irrationals p=ba+c and
y=dao +f er(oc);

b-0,c,d=0,fe Fp, it shows that there
exists S € SL(Z, Fp) such that S(B) =y.
Taking  the
(XY2)" = YX:Brs B+1 denoted by Z.

parallel  transformation

Since Z"(8)=ga ford=ga+h, put
S(ba) =da. We obtain S(ba) =do iff

S'(a)=b™do for S:[S t] and

u v
-1, -1
s=[PP PSR,
ub %
Now it is enough to show that
S(0)=*"L _do with sv-tu=1
uo + Vv

for a suitable transformation S, namely
(so+ t)(Ua + v)

(uo + v)(ua + v)

~ su(-1)+suo +tu(l-o)+tv
B u*(-1)+uv +v?

o—Su+tu+tv
= =da
g(u, v)
with g(u, v) = -u? +uv +v2.

For d, = d™* we seek for a rational solution

{u, v} in F, such that g(u, v)=d,,

which implies that
2 2

v +uv—(u +d0)=0.

Let D, =u? +4(u2 +d0):5u2 +4d, be

the discriminant of the above quadratic
equation on v, then
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iii)o.  If d, isasquare eg in F, then we
find a solution
{stuv}i={e;)'0,0e,}.

iii)). We assume that d, is not square
free in F for p=2, 3(mod 5),5 is not
square free. Denoting a generator of the
multiplicative group F*, namely a primitive
root modulo p by r.

By our assumption, d, is not a square in
pr , assuming the discriminant

D, =5u° +4d, is not a square for any

u=re X, we obtained
r2&14—1'.2] + r2d+1 — r2kj+1.

If r.2kj+:L — I,.2k/,-¢—1, namely
2k +1=2k, +1(mod p-1), then
r 2j=r*(mod p), hence
2j=2¢/(modp-1), j=¢ holds for
0<j—r<P= 3.

2

p-3

2
pZntl _ r2d+1, namely

I,2a+1r2m + r2d+1 — I,2d+1, hence r2a+1r2m — 0’
which is a contradiction.

For m(ogmg j we  have

p-3
2
u=r" and 5u®+4d,=r", we obtain

JD, =r4.

Finally, we

There exists j(Ogjg j such that

determine the

S t
transformation S = [ j , with
u v

\ :@\/DT =€,, where

-u, +¢e
— 0 0 —
v=—t 0 e, =+D,.

D, =5u; +4d™" =eg,e, eF,

sv-—tu, =1.

and

If u, or v, erX, there exists a solution
{s,t,u v}= {O, —Ug', Uy, vo} or
[V, 0,uq, v} with sv—tu=1.In the

O+e
case, if U, =V, =0, then 0=—2,

hence by e, =0, and by 5.0+4-d, =0,
we get d,=d*=0, which is a
contradiction.

Then by the transformation

7 G (surus) -y S(a), it was obtained

ZS(a) =da, namely o and dow belongs

to the same orbit. Therefore the following
theorem was obtained.

Theorem. Let p be an odd prime and
o be a solution of a quadratic

equationx” —x-1=0. Let F (o) be the
field {Soc+t; s, te Fp} over the finite
prime field F, = {0,1,--p—1}, then:

(1) For p=14(mod5) we have
F,(a)=F, and F, is occupied by
the single orbit of the length p by

the action of PSL(2, Z);
0->1-:--->p-1->0.

(2)  For p=2,3(mod5) we have the
quadratic extension F, (o) over F)
and F (o) is separated into two
disjoint orbits, namely one is F; of

the length p;
0-1->:--->p-1-0
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and the other F (a)\F of the length

p?—p by the action of PSL(2,F,);the

details of these are presented in the diagram
below:
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