
Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018

THE IMPLEMENTATION OF REAL-TIME DATABASE QUERIES IN
PUSH-BASED QUERYING TECHNIQUE

Waseem Ahmad, Taimoor Hassan, Muhammad Atif Hasnain

Department of Computer Science, Lahore Garrison University, Lahore, Pakistan

KEYWORDS ABSTRACT

Implementation,
Real-time
Database Queries,
Push-based
Querying
Technique

Traditionally database can manage their data in application-
independent structure where data are updated at fixed internal on
user interaction do not fulfill all needs for software development.
There is a need for getting information in real-time fashion which
helps in making decisions in an ever-changing reality. When data
access is accessed from different locations in a DBMS atmosphere,
data retrieval delay becomes one of most critical issues in meeting
transaction deadline i.e. stock exchange market. We have identified
underlying techniques methods that are major hurdles in efficient
implementation of real-time database queries and explore problems
exists in traditional databases. The “aim of paper is to explore” the
old /new technologies for getting the better and efficient results in
push-based querying fashion.

INTRODUCTION
Traditionally databases are designed to support only pull-based techniques to access the
data in which the client only gets data when they request to server. This model is only
suitable for that type of application which only requires static data i.e. work on common
data set and isolated from each other. Lot of new applications mainly in web applications
like stock exchange data, messengers require continuously up-to-date data activity with
respect to time. Hence, the client would be able to get result updates as soon as changes
occurred in the results. Unfortunately, only some OLTP (online transaction processing)
databases support real-time querying updates to clients afar triggers-based approaches
and applications developers face lack of functionalities and uses frameworks to achieve
the targeted goals. They designed the applications in such a way that application server’s
polls for data updates after some interval of time except maintaining the query outcomes
in real-time behaviors. It can help in delivering up-to-date notifications to the users, but
user-defined queries are not handled easily.

LITERATURE REVIEW
A “real-time database system” (RTDBS) guaranteed all features of conventional DBS like
independence of data and “concurrency control”, also, imposing real-time constraints
involved in applications (Buchmann, 2006). Like, the operational database system, an
RTDBS works like a repository of data, offers well-organized storage, and providing the
information retrieval and manipulation. Real-time database manages “time-constrained
data and time-constrained” transaction. Real-time “databases are generally used in real-
time computing applications that require timely access to data. Definition of timeliness
is not measured, for some applications, it is milliseconds”, and minutes also (Stankovic,
Son, Hansson, 1999). It provides all sorts of traditional system database like concurrency
control and independence data, at same time it forces which applications needs. These
databases added a requirement to meet the deadlines of the system. They are “commonly
used in real-time computing applications that require” time-constrained data.

The traditional “database systems differ from an RTDBS in many” features. Three main
aspects on which these two databases types differ from each other. Real-time databases
are associated with timing constraints with different operations that are carried out, real-

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 16

time databases deal with temporal data which lost its validity and become stale after
some period time and the last one is, the performance matrices in terms of transactions
missing deadline per unit time. The aim of the database real-time is to maintain the data
consistency along with the transaction processing to achieve the timing constraint of the
transactions. A real-time data value becomes stale, until the condition “where it does not
reflect anymore the state” of data with the passage of the time. Hence, “to maintain the
consistency between” actual and the reflected state can lead to temporal consistency. The
temporally “consistency can be measured in terms of absolute and relative consistency”
(Ramamritham, 1993).

Absolute consistency deals with two states i.e. data is only valid between fixed intervals
of time. It represents targeted and actual environment consistency. Relative consistency
involves resulting data derived from others. The Real-time database needs to manage
timing constraint of data implicitly or explicitly in predictable fashion i.e. to deal with
transaction deadlines or periodicity limits bounded with tasks. Transactions “in a real-
time database environment are subdivided into three” classes: update-only transactions,
read-only transactions, and write-only transactions. Update-only “transactions are used
to update the values of real-time data” including read and write operations to satisfy the
concurrency control in databases. These transactions deal with non-real data but reads
only real data (Idoudi, Duvallet, Sadeg, Bouaziz, Gargouri, 2009). Real-time databases
are designed for specific purpose, therefore, design of a real-time database needs special
architecture to push real-time updates to the clients in the push-based style, so the user
can stay up-to-date with information they needed.

Problem Statement
with the significant advances in databases, the data can be processed so fast and there is
an increasing demand for various databases to process data in a real-time fashion. When
remote access to data is considered in a Database Management System environment for
detecting query results changes, data access delay becomes one of most serious problems
in meeting deadlines like stock exchange market or air traffic control system. Currently,
different push techniques are used as follow:

i. Polling database at a specific interval of time or when data is updated, it is sent to
the client automatically in push-based style, where it is displayed as updated data
or adding them into old data.

ii. Data updates only occur at the server-side.
iii. Automatically updates the data which clients require by using logical predicates.

However, the reason behind these types of databases performing real-time push-based
using programmed pull techniques, which involves middleware for observing changes
via polling i.e. the client machine is in contact with server periodically specific intervals
of time. The major drawback of this technique is that it concerns with specific interval of
time for refreshing updates rather than data Fig 1.

Figure 1 Traditional Result Changes Monitoring Using Polling Technique

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 17

In this paper, we purpose a new publish/subscribe architecture for real-time database
that has unique features which is based on scalable push-based query processing in
databases, providing the following benefits:

 Push Based Notification Change: Our “proposed architecture provides real-time
notifications” to subscribed clients as an “additional feature to existing” databases
in standalone systems.

 Scalable: The system is capable of maintaining continuous queries as well as
update throughput to scale out the system for queries handling.

 Viable Query Engine: Through a viable query engine, the proposed technique is
applicable to different databases, not only system-specific.

In our proposed architecture, clients just define their parameters in the query for one
time and get the subscribed query changes notifications of those data without refreshing
or querying the database again for up-to-date results. The “rest of the paper is organized
as follows: in the next” section, we discuss about the database processing and transaction
scheduling techniques. The section 3 describes scenarios and describes existing database
issues that provide notifications updates for real-time monitoring. Then, we describe the
experimental methodology and describe the overall architecture for push-based query
notifications changing for real-time databases in section 4. We discuss related work in
section 5, and the conclusion can be found in section 6.

TRANSACTIONS IN REALTIME DATABASES
In many applications, an update to the database may be of interest to other clients in the
system. For such type of requirements, updated data must be pushed to all subscribed
clients. Such type of updating data is done through push-transactions. For assumption of
such updated data, it must have timing constraints associated with them. Transaction
processing on which our model is based has been discussed. Figure no 2 shows types of
transactions being used for processing in our proposed architecture: regular updates,
push-based updates, and queries. The push-based updates concern with automatic data
update mechanism while regular and query updates concern with client-server DBMS.
The push-based updates have time constraint while other does not support the timing
constraints. Henceforward, the deadlines are only imposed on push-based updates (push
transactions) since our goal is to meet the timing constraints to provide the up-to-date
information to clients.

Figure 2 Types of Transactions

Transaction Scheduling Techniques
Transaction scheduling in real-time databases “plays an important role in deciding the
performance” of RTDBS system. The performance is measured in terms of transactions
completed per unit time (Choudhary, 2013). Priorities in RTDBS “can be assigned in the
number of ways”, but most commonly used techniques are:

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 18

First Come First Serve
This is a “top priority assignment scheme where the priorities are assigned according to
its arrival” time. First arriving transaction has assigned higher priority. The main
disadvantage of this rule is this delivery “scheme is that it does not use the deadline
information”. The FCFS will be discrimination in contradiction of a newly discovered
transaction, with an urgent term an old transaction that may or may not have later no
short period of time. This is not suitable for “real-time systems”, but we consider FCFS
for comparing with other schemes.

Earliest Deadline First
In EDF, the highest priority will be assigned to those transactions with the closest
deadline and the one with the longest delay to the lowest priority. This priority allocation
system is known to achieve “better performance in the real-time systems under low and
moderate load levels. However, one disadvantage of EDF is that it can assign the highest
priority to task that will miss its deadline”. When it happens, “system allocates resources
to a transaction that cannot meet its deadline in favor of a transaction that could meet its
due date. Thus, EDF may not be desirable for heavily loaded systems”.

Minimum Slack Time First
The “slack time of a transaction is the cushion that can” be captivated by random delays
without “missing the deadlines. Like, if ta is the arrival time, E is the estimated execution
time and d is the deadline, then the slack time at the time of arrival of a transaction is S =
d — {ta + E). If the transaction has already received some service, say R, then S = d — {tc
+ E — R), where it is the current time. A negative slack time implies that the transaction
has either already missed its deadline” or when it has been estimated that it cannot meet
its deadline. The transaction with the minimum slack time is scheduled first by this
technique.

Push Transactions
A push transaction defines the operations performed at the client’s cache on database
object copy. When the push transaction has arrived at the client-side, it executes the
transaction locally to maintain the consistency of the database object copy. Push based
transaction is assigned highest priority than regular transactions as they have meeting
deadlines requirements. Push transactions are classified into two types, absolute and
relative updates. The absolute transactions have fixed values while relative updates have
dynamic values. Absolute updates are pushed to subscribed clients at any time without
any risk. But, relative updates are pushed to the clients in order as they are performed,
for successful execution.

THE SCENARIOS
There are many applications that requires up-to-date data as the data changes, such type
of applications relies on the server-side notifications for monitoring the changes without
requiring them to know where and when to look for changes, which are categorized as
follow:

 Notifications: Notifications update to subscribed clients upon the result changes
in the user query so that the clients or users will stay up-to-date about occurred
changes.

 Invalidations: When the results of query are changed it becomes invalidated in
caches of memory. Query results are also served by caches and database so that
the workload is taken off and speed of query results will be increased by caches
located near the users.

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 19

The commonly requested queries are kept in a separate table to relieve primary database
called materialized or logical views. Amendment in querying maintenance of database to
retrieve data is possible which may not be otherwise available. Traditionally, pull-based
databases are incapable of push-based notifications to notify the clients about the change
of notifications in real-time fashion and have one of the critical issue in the last years.
Since early models are based on append-only strategy (Terry, Goldberg, Nichols & Oki,
1992), while modern designs are based on the updated and removed statistics, therefore,
applications buildings become easy. Complex Event Processing CEP (Abadi, Carney,
Çetintemel, Cherniack, Convey, Zdonik, 2003; Abadi, Ahmad, Balazinska, Cetintemel,
Cherniack, Hwang, Tatbul, 2005) systems are designed especially for complex events
handling like fraud detection from low-level events or sensors malfunctioning. Query
does not have only constraints, but also have temporal limitations of the data or any
relationship between the different events.

While databases that eternally store data and then provide updates are based on streams
of ephemeral data and can just holds state that is derived out like aggregate functions in
the memory little period of time. The databases that are based on time-series (Dunning
& Friedman, 2014) are designed to save and respond to unlimited set of different events
in the form of functions when it happened like sensors data is indexed by time. Although
they permanently save data and some data in form of continuous querying techniques
for example Influx DB3, they are typically designed for OLAP queries, virtualized views
and for no expanding of the notifications change. Meteor is a platform for building web
applications, which provides reactive notifications change to subscribed queries, which
uses MongoDB as bases for self-maintaining results of queries. Meteor application server
checks each continuous query periodically for comparing actual and reflected to detect
results changes and only sends relevant updated information to users. Hence, poll-and-
diff technique added latency of several seconds in results update. Also, it increases load
on application server and database.

The parse is an application development framework which is also based on MongoDB,
similarly to providing result changes and notifications. This involves the multiplication
across the distributed level of the machines, but this also adds limitation of single-node
Redis illustration reserved for messaging (Parse & Scalability, 2016). Database services
accommodated by Parse are going to fall down in January 2017 and number of people
contributing to the development has been decreasing over the previous months (Parse &
GitHub, 2016). Other contributors have also publicized the provision of the Parse
Software Development (Glenn, 2016) while in future Parse platform is un-predictable.
The another distributed SQL database is the Oracle 11g with change of notifications in
complex queries that provisions streaming joins with the firm restrictions (Witkowski,
Bellamkonda, Liang, Sheng, Smith & Yu, 2007). The continuous queries involving
materialized views are sustained by applying dedicated changed operations on-request,
periodically or upon the commit transactions (Alpern, Arora, Barclay, Bronnikov, Chang,
Chen & Elson, 2011).

This also has scalability issue due to the strict consistency necessities and distributed-
disk architecture. Cloud information base that delivers notifications concerning modified
information, however, it solely provides limited question quality owing to the limit
underlying information model that desires information to be ready during a tree of
objects and lists. Pipeline sound unit improved PostgreSQL by alert notifications for
complicated queries. Whereas the open-sourced version will solely run on one node, the
enterprise version provisions a clump mode that partition continuous views and
connected calculation across completely different machines. But, all the DML (Insert,
Update and Delete) operations are accessed synchronously via two-phase commit among

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 20

all nodes (Pipeline 2015) while Pipeline DB Enterprise version is only scalable up-to
modest level of cluster sizes.

PROPOSED MODEL AND TECHNIQUES
The publish/subscribe communication model (Agarwal, 2014) is based on asynchronous
messaging paradigms which provide larger scalability of the distributed systems. This
model helps to meet challenges of providing push-based notifications, efficient storage,
and scalability between different systems. In this age of modern application development
especially web applications, that requires application servers to provide real-time
updates proactively to the subscribed clients. However, in traditional databases, they use
pull-based strategies, other frameworks and implements APIs for streaming real-time
updates and provide real-time push-based updates to the subscribed clients. Monitoring
for result changes in query is very difficult to handle while detecting for changes in
individual is easy. The push-based design is very difficult to implement on the top of
available infrastructure, presently databases typically supports pull-based techniques to
retrieve data. Therefore, our proposed architecture model that handle query change
notification for subscribed client, which is based upon push-based strategy for real-time
query using continuous queries.

Figure 3: Proposed Model Architecture

In this proposed architecture shown in Figure 4.2, common OLAP/OLTP tasks are
managed by application servers that deal with the database rather than the client's direct
access. To manage additional real-time tasks, application server maintains continuous
queries and generates notifications whenever results changes in the database. To design
continuous questions that keep stands itself, the appliance server needs to supply the
period scheme with all necessary information i.e. initial question results and complete
information objects on each write operation. every continuous question is assessed once
direct and at the moment sent to the information aboard all matching objects. Every
DML operations, i.e. every insert, update and delete, is distributed to the information at
the side of a complete after-image of the written object, i.e. with the whole information
object when the operation has been performed. Apart from this, associated application
server subscribes to notices for the continual queries of its shoppers and forwards them
dependably.

The task of similar the results of arriving operations against every continuous query are
executed in appropriated form and subdivided both by written objects and look after the

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 21

queries. In this way, each processing node is responsible for a subset of entirely queries
and a subset of each operation. Changes are noticed based on whether an item used to be
a match and whether it still is a match for a query. For each change, a notification is
referred to the subscribed clients. The planned system proposal eliminates the barrier of
resource wants additionally as failure domains for key storage (persistent knowledge,
pull-based access) from one viewpoint and period options (change notifications, push-
based access) on the opposite. in the meantime, the continual question capability is
handled in period information, for incessantly keeping question results will be earned,
whereas determined knowledge could be unbroken in a very powerfully reliable single-
node system. Utilizing a planned design and asynchronous communication throughout
the important process path, we have a tendency to avoid obstacles and therefore succeed
linear quantifiability and low latency.

CONCLUSION
This report provides an understanding of real-time database for building application like
web applications in real-time manners, by presenting proposed model which improve
efficiency, scalability of RTDBS to subscribed clients in push-based way as the changes
occurred in subscribed queries it passes it to the client, so the user can stay up-to-date
with refreshed data without reconnecting with server. The push-based architecture of
real-time database increases the usefulness of query change notification and reduces the
difficulty of traditional database. Therefore, real-time databases are designed to develop
and implement reactive applications, since they keep user’s critical information updated
and notify about changes. In this paper, we deeply study the fundamentals of traditional
as well as real-time databases and illustrate the benefits of real-time databases. Through
the research work presented a real-time database model and proposed a new model for a
push-based querying identified. We figure out the hurdles in implementing real-time
databases nearly, to enables clients to define data and stay informed about. We proposed
an architecture for push-based databases that is scalable and low latency. And the final
conclusion is that this is the best solution for real-time application.

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J. H., &
Tatbul, N. (2005). The Design of the Borealis Stream Processing Engine. In CIDR, 5,
277-289).

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., & Zdonik, S.
(2003). Aurora: A new model and architecture for data stream management. The VLDB
Journal: The International Journal on Very Large Data Bases, 12(2), 120-139.

Agarwal, N. (2014). The Publish-subscribe based communication model (Doctoral
dissertation).

Alpern, D., Arora, G., Barclay, C., Bronnikov, D., Chang, T., Chen, L., & Elson, D. (2011)
Oracle Database Advanced Application Developer's Guide, 11g Release 2 (11.2) E10471-
04.

Buchmann, A. (2006). The Real-Time Databases, Idea Group.

Choudhary, S. R. (2013). Performance Evaluation of Real-Time Database Systems in
Distributed Environment. The International Journal of Computer Technology and
Applications, 4(5), 785.

Dunning, T., & Friedman, B. E. (2014). Time series databases: new ways to store and
access data. O'Reilly Media.

ISSN: 1019-8180 Ahmad et al… The Implementation

Gomal University Journal of Research, Volume 34, Issue 1, JUNE 2018 22

Glenn, G. (2016). Azure welcomes Parse developers. Microsoft Azure-Blog, February
2016.

Idoudi, N., Duvallet, C., Sadeg, B., Bouaziz R., & Gargouri, F. (2009). How to model a
real-time database? In: Proceedings of the 12th IEEE international symposium on
object-oriented real-time distributed computing (IEEE ISORC'2009). Tokyo, Japan:
IEEE; a. p. 321–5.

Parse. Scalability. Parse Live Query documentation, 2016. Accessed: 2016-09-20. Parse.
GitHub: contributors to Parse Platform/parse-server. 2016. Accessed: 2016-09-19.

Pipeline, D. B. (2015). Two-Phase Commits. Pipe-line DB Enterprise documentation,
2015.

Ramamritham K. (1993) Real-time databases. Journal of Distributed and Parallel
Databases (Springer), 1(2):199–226.

Stankovic, J. A, Son S. H., & Hansson, J. (1999). The Misconceptions about real-time
databases, IEEE Computer, 32 (6): 29–36.

Terry, D., Goldberg, D., Nichols, D., & Oki, B. (1992). Continuous queries over append-
only databases, 21 (2), 321-330). ACM.

Witkowski, A., Bellamkonda, S., Li, H., Liang, V., Sheng, L., Smith, W., & Yu, T. (2007).
Continuous queries in oracle. In Proceedings of the 33rd international conference on
Very large databases (1173-1184). VLDB Endowment.

