ON A CLASS OF TWO-GENERATORS, TOO-PELATIONS FINITE AND INFINITE GROUPS

*ZAFAR ALI KHAN **TAJ MUHAMMAD KHATTAK **NASEER AHMAD,

I-lado = Mial In [2] Johnson and Robertson has shown that the metacyclic group $< a, b \mid a^m = 1, b^{-1} \mid ab = a^r \mid b^n = a^s > is defined by two generators$ and two relations in the case when s = m/(m, r-1). In this note we give a proof for more or less similar problem of describing the structure of the group

 $< ab \mid a^{2m} = b^n$, $a^{-r}ba^r = b^{n-1} >$, clearly, for r = 1, this group is metacyclic of order 2 mn (n-2). However, we state and prove the following theorem. 1 > 1 > 2 ,1. x = d.i bns 1 . x = d.i

Theorem:

Let $G = \langle a, b \mid a^{2m} = b^n, a^{-r} b a^r = b^{n-1} \rangle$. Then if

- (i) 2m, r) = 1, n > 2, G is metacyclic of order 2mn (n-2)
- (ii) $(2m, r) \neq 1$, $2m \neq r$, $n \geq 2$, G is in-finite.

d'sd'

eration algorithum (see [1], }

Proof:

(i) To prove the result, it is enough to show that $\langle b \rangle$ is a normal subgroup of G. To do this, since (2m, r) = 1, there exist integers α , β such that $2m \alpha \beta \gamma + 1$

2m.a = 1.1 and (r + i), $b = x_i^{-1} (r + i)$, $1 \le i \le r$

Now since
$$a^{-r}$$
 b $a^{r} = b^{n-1}$, we have
$$a^{-\beta\gamma} b a^{\beta\gamma} = b^{(n-1)^{\beta}}.....(i)$$

Since a^{2m} is central, so (i) gives

18 central, so (1) gives
$$a^{-(2m \alpha + \beta \gamma)} b a^{(2m \alpha + \beta \gamma)} = b^{(n-1)}^{\beta}$$

$$\Rightarrow a^{-1} b a = b^{(n-1)}^{\beta}$$

^{*} Mathematics Department, Peshawar University.

^{**} Mathematics Department, Islamia College, Peshawar University.