The strangers as a strangers and strangers and service to the strangers as a service of the strangers as a service of the serv TEST OF HYPOTHESES AND OPERATING CHARACTERISTIC CURVES VERSUS CONFIDENCE SETS

GUL NAWAZ KHAN Department of Statistics, University of Missouri-Columbia (USA). described the continues as the season the the tree the tree the

Received 22-6-87 Accepted 26-9-87

ABSTRACT devicent edgention A demanded strit & noised This paper presents a critique of an article by Natrella. Confidence sets, Operating Characteristic Curves and a class of Tests of Hypothesis are characterized. Using A Programming Language (APL) various quantities and relationship are explained with an example.

exact width of the copfidence interval, we can infer the order of

INTRODUCTION Tableson of data for sech allertak , vissbire

Confidence sets, operating characteristic curves and a class of test of hypothesis will be characterized and defined. Certain ill defined statements of Natrella [1] are considered. Examples of a class of problems and their traditional solutions are given. If the statements were better defined (in fan anticipated way) then the class of examples would be a class of counterexamples to the statements. There are comments to the effect that the class of counterexamples is a sufficiently important part of (frequentist) statistics that we would not like to resolve the contradictions by leleting these solutions from statistics.

HARACTERIZATIONS AND DEFINITIONS:

Let $A(\theta)$ be the region of acceptance of the hypothesis

Ho : $\phi = \theta$ Ho: $\phi = \theta$

or some error rate a and any permissible 0. In the test of Vpothesis, bus agent interested doty respect done to be ether

Ho: $\phi = \theta_0$ average a data tentor and and a constant and the state of the state e fails to reject Ho if the observed value X has the property A(00). The probability of this event (assuming continuity or a andomized test) is $1-\alpha$.

The operating characteristic curve is taken to be synonymous th the power curve in this writing. The curve is P{X∈A(θ₀)| Phθ} caphed against θ . The only A needed is $A(\theta_0)$, and the outcome X